A Comparative Analysis of Software Refinement Techniques

lon IVAN

Economic Informatics Department, Academy of Economic Studies,

Bucharest, Romania

Adrian VISOIU

Economic Informatics Department, Academy of Economic Studies,

ABSTRACT

The concept of refinement is defined for models used in
estimating and measuring software quality. Both classical and
genetic algorithms based refinement methods are presented.
Specialized software is used for developing model refinement
processes. The comparative analysis of refinement techniques
emphases the situations in which a certain technique should be
used and defines the limits in which of the refinement result
leads to efficient models. For a homogenous set of C++
programs, initial models are built and then refined, the resulting
models being validated.

Keywords: software metrics, model refinement, analysis
1. MODEL STRUCTURES

Processes and phenomena are modeled in order to estimate their
dynamic behavior. There are numerous criteria to classify
models.
- by the number of equations , there are models with a
single equation and models with many equations
- by the nature of the variables, models are
deterministic or stochastic
- by the size criterion, there are small size models,
including few exogenous variables and big size
models with many exogenous variables
- by linearity criterion, there are linear models and
nonlinear models
- by deriving criterion, there are base models and
derived models
- by the nature of the solutions, there are approximated
solutions models, fuzzy, neural network based,
genetic algorithm based and exact solution models
- by the aimed objective, models are for prognosis,
optimization simulation, heuristic and evolution.
When a phenomenon or a process is modeled, the nature of the
variables and factor interaction are analyzed and a set of models
is identified, models which accurately represent the structure,
the dynamics and the behavior of the phenomenon or the
process. A criterion for model ordering is defined, data is
recorded, model coefficients are estimated and model quality
assessed. From the ordered list of models, only a few are chosen
and those are taken into account for validation. After validating
models, only a model is left and this is subject for refinement.
A technology for doing that is defined distinguishing the
convergent - iterative nature of the model obtaining process as
shown in figure 1.

Bucharest, Romania

phenomenon/process
analysis

A/_/

establishing influence

factors

establishing model

connecting factors performance
to variables criterion
making
measuring variab les estimations
using an experiment
plan /

L computing
genfrétm? performance
analytica criterion for
forms

each model

Criterion
fulfilled

refined
model
validation

model ordering

\‘

selecting a
model class

Figure no. 1 Convergent — iterative process for building
process/ phenomenon estimation models

Considering the peculiarities of real processes and phenomena,
a new cybernetics branch is developed, model design.

To developing models from a single model class whose
properties are well known by the designer and there is software
available for implementation, the model building technology
adapts the selected model set structure to the input datasets.

2. MODEL GENERATORS

Model generators are software instruments for obtaining
models from a certain model class given the list of variables, the
model structure, existence restrictions and datasets.

Model classes group models with the same structure, e.g.
linear models, linear models with lagged variables, nonlinear
models. For each class a model generator is developed as a
software module. Each dataset contains data series for the
Linear model generators take as input a dataset containing a
number of independent variables and a dependent variable and
produce linear models combining influence factors.

The practice conducted, in general, to the elaboration of linear
models because: the studied phenomena aim a linear
dependence, the parameters estimation methods are customary
for this type of models, the results interpretation is lightened if
the linearity hypotheses are taken into account.

The linear generators take as input: the list of independent
variables, the dependent variable, the dataset, restrictions about
the dimension and the complexity of the model, performance
criterion for all generated models. The output consists of: the
list of generated models ordered by the performance criterion.

In [8] nonlinear generators are described. Standard nonlinear
model generators use predefined analytical forms for generating
models. General nonlinear model generators build automatically
analytical expressions containing influence factors. Analytical
expressions of models are generated directly in polish form
using a backtracking based algorithm with severe restrictions.
The parameters for this process are: the operand set, the
coefficient set, the operator set, the maximum length of the
stack, the maximum complexity of the generated expression.
The nonlinear model generator is suitable for modeling as the
phenomena do not always follow linear laws.

The linear models generators with delayed arguments allow the
elaboration of constructions which permit the modeling of the
multiple stimulation effects which are found on short term in
influences from all the sets. The phenomenon evolution shows
that the factors differently influence the resultative variable.
More, the variation at a moment t of a factor spread them with a
delay abroad the evolution of the resultative variable. The
delayed arguments model generator takes the same inputs, as
the linear generator, but it also does not only combinations of
variables, but also combinations of delays for the variables
included in a certain model. As a new parameter for this
algorithm, the maximum allowed delay is taken.

Model generators are important instruments for the different
refinement methods, but also generally for model design.

3. MODEL COMPLEXITY

In [6] complexity classes for models estimating software quality
characteristics are presented.
The complexity in Halstead sense for a model is given by the
relation:
C(M)=ny log ny + ny log n,
where
ny - number of operands (variables and coefficients);
n,- number of operators.
The general model for complexity in Halstead sense is:

¢, =(X fip)log.(X £,p)+(Xy))log. (Xha))
@

where

m- number of operands

f; — frequency of appearance of operand i
pi — Weight of the i operand

recorded variables. The endogenous variable is specified and
the generator builds analytical expressions using influence
factors, coefficients, simple operators and functions. For each
model structure, coefficients are estimated and a performance
indicator is computed. The resulting model list is ordered by
the performance indicator. The analyst chooses between the
best models an appropriate form that later will be used in
estimating the studied characteristic.

n — number of operators

h; — frequency of appearance for i operator

;- weight of " operator, built from operator precedence table
The C, indicator is connected to an indicator normalized on the
[0,1] range permitting a good assessing of model complexity.
Operand and operator diversity leads to an increased complexity
of the model.

4. REFINEMENT THROUGH VARIABLE
ELIMINATION

The independent variables X1, X2, .., Xn and the dependent
variable Y are considered. For the given dataset, the complete
model is built, containing all the variables:

y= 8% @
i=1

Coefficients are estimated and the model is assessed using as
performance criterion SS, the sum of squared differences
between estimated values for the dependent variable and the
real values. Also, the coefficient of determination is fit to be
used as performance criterion.

Variants of models are built by removing one by one an
independent variable. For each model variant built, coefficients
are estimated. The SS indicator is computed and the model list
is ordered by it. The first model is chosen its SS indicator value
being the smallest among all. This is the result of the 1-
refinement process.

The same way, combinations of two independent variables are
removed. The number of models obtained is combinations of n
taken as 2. Coefficients are estimated and the SS indicator
computed for each model. The model with the smallest SS
indicator is chosen as the result of the 2-refinement process.
The process continues until the linear model has the form:

y= ai*x, =12, .,n

There is a number of 2"-2 model variants.

5. REFINEMENT THROUGH COMPLEXITY
DECREASE

Reducing nonlinearities refers to the situation in which power
terms are replaced by variables, function calls are replaced by
variables, function composition is replaced by directly
aggregated functions.

The model:

y=ax’+hZ2+cu?+e is replaced by y = Ax+BZ+CU+E

The model

y=a tg X +b In u+ e is replaced by y=Ax+Bu+E

The model y = a sin(log x)+b €*""+g by y = A sin x*log x+B
e**sinx +G

Reducing nonlinearities simplifies the model and creates the
context for easy to observe processings and allow term removal
in following refinement steps.

6. REFINEMENT THROUGH GENETIC
ALGORITHMS

For genetic algorithms, which implement the model of
population evolution, one important application is symbolic
regression. Symbolic regression evolved itself with the
introduction of genetic programming and later with the gene
expression programming. Starting from a dataset in which it is
specified the dependent variable and the independent variables,
an initial population of chromosomes is built and then it is
subject to a replication process including specific rules.

These algorithms have a very specific way of representing
analytical expressions of models. The chromosome is a linear
structure of fixed length made up of genes. The role of the
chromosome is to code an analytical expression. A gene
structure is obtained from the syntax tree of the expression it
represents. The nodes of the tree are numbered starting from the
root and then level by level and from left to right obtaining a
linear structure. Each node contains either an operator, a
constant or a variable. Like the nonlinear generator do, the
domain for the generated expressions depends on the set of
accepted operators and the set of operands built up from
variables and coefficients. To create the final expression from
the chromosome, the subexpressions derived from genes are
aggregated using a simple aggregation function like summation
of multiplication.

An initial population of chromosomes is considered. The
evolution is obtained through applying genetic operators:

- selection implies extracting a number of individuals
from the population based on a measure for their
fitting to the aimed objective

- mutation implies random changes of some positions
in the chromosome; a certain position contains an
operand or an operator and its change leads to a new
analytical form, differing from the initial one, when
the expression is rebuilt; this genetic operator is
essential to introduce a degree of variability in the
generation process

- transposition implies changing the position of
sequences of elements from a gene inside a
chromosome

- recombination implies pairing two parent
chromosomes and obtaining a new chromosome
inheriting contents from both parents

The genetic operators are applied for a number of generations
leading to a best fitting model in the given hypothesis.

The main drawback in analytical expression generation using
gene expression programming is the building of high
complexity expressions in contrast with the objective of model
refinement as shown in the next section.

7. EXPERIMENTAL RESULTS

The dataset considered for experimental results refers to
software metrics collected for a project. The dataset contains
data series for 40 software modules and is a sample extracted
from the public dataset JIM1 found at [14]].

ERR — The number of defects associated with a module

LOC — number of source code lines

RM — Branch count metrics showing the number of excedent
arcs from decision nodes of he program

CC — The cyclomatic complexity of a module

Using the refinement through variable elimination it is desired
to obtain a model for estimating the number of defects from a
software module, ERR, using as independent variables the
others recorded.

A linear model containing all the variables is built

ERR_EST = a*LOC+b*RM+c*CC+d

where

ERR_EST — estimated value of defects from a software module.
Estimating the coefficients through the least squares method,
the initial model is:

Mp: ERR_EST = 0.0038*LOC+ -0.00025*RM+ 0.0098*CC+
5.2707.

About the quality of the model, the sum of squared differences
is SS = 175,70 and standard deviation is 2.15 and adjusted
coefficient of determination is R%gjusted=0,7174.

The refinement through variable elimination implies building
models from this initial structure by removing one variable at a
time. The following model structures are obtained:

M1: ERR_EST = a*LOC+b*RM+c

M2: ERR_EST = a*LOC +b*CC+c

M3: ERR_EST = a*RM+b*CC+c

For these models, using the same dataset, the estimations are
obtained:

M1: ERR_EST = 0.00323*LOC+ 0.00783*RM+ 5.2874
SS=178,91 R%gjusteq =0,7202

M2: ERR_EST = 0,0003797*LOC +0,00961*CC+5,27064
SS=175,70 R%gjusted =0,725

M3: ERR_EST = 0,0209*RM-0,00301*CC+5,4132
$S=202,725 R%gjusted =0,683

The process continues with removing combinations of two
variables from the initial model, obtaining the model structures:

M4: ERR_EST = a*LOC +b

M5: ERR_EST = a*RM+ b

M6: ERR_EST = a*CC+b.

After estimating the coefficients the models are:

M4: ERR_EST = 0,005199*LOC + 5.3547 SS=189,19 Rzadjusted
=0,7121

M5: ERR_EST = 0,01905*RM+ 5,4153 SS=203,1 Rzadjusted
=0,691

M6: ERR_EST = 0,02844*CC+5,6704 SS=247,26 Rzadpsted
=0,623

The data obtained from the models built by elimination of
variables is presented in table 1. For comparison, the first line
includes the initial model.

Table no. 1. Obtained model performance indicators

Model SS R
MO 175,70 0,7174
M1 178,91 0,7202
M2 175,70 0,725
M3 202,725 0, 683
M4 189,19 0,7121
M5 203,1 0,691
M6 247,26 0,623

Listing in ascending order by SS, the models appear as in table
2.

Table no.2 . Ordered model list ascending by SS

Model SS R
MO 175,70 0,7174
M2 175,70 0,725
M1 178,91 0,7202
M4 189,19 0,7121
M3 202,725 0, 683
M5 203,1 0,691
M6 247,26 0,623

The initial model is ignored and M is chosen as refined model
because it has the smallest SS, which is a criterion to be
minimized.

It is a fact that the coefficient of determination that shows the
quality of the regression has a greater significance than the SS

indicator. That is why the list of generated models is also
ordered descending by this Rzadjusted indicator, as shown in table
3.

Table no. 3. Ordered model list descending by Rzadjusted

Model SS R
M2 175,70 0,725
M1 178,91 0,7202
MO 175,70 0,7174
M4 189,19 0,7121
M5 203,1 0,691
M3 202,725 0,683
M6 247,26 0,623

It is observed that the model M, keeps being the first on the list.
It is a proof that refinement is necessary. The smaller SS of
model Mg than the SS value of M, which has a greater R2;gjusted
value than My, is explained by a frequent phenomenon met in
statistics. When adding many variables to a model, due to
accidental correlations between the newly added independent
variables and the dependent variable, the value of SS decreases,
without raising the degree in which that model explains the
studied phenomenon.

Using the complexity decrease refinement method, an initial
model structure containing power terms is considered:

M, ERR_EST =a*LOCP"+c*CC%+e

Through coefficient estimation using a least squares method, the
model becomes:

M, ERR_EST =-2.034 * LOC1%+1.143*CC%*+1.8

The coefficient of determination for this model is R? = 0.8783.
Proceeding to refinement, the power terms are replaced by
variables, obtaining the model structure:

My: ERR_EST =a*LOC +b*CC+c

which is the same with M, with the same characteristics as
described above, M, is given as refined model also by this
method.

For the dataset JM1 presented in the next chapter the model
structure obtained using gene expression programming is:

ERR = (¢ (LOC¥?+¢Y?)%+(LOC+LOC*In LOC)¥?)Y2

where c is a constant.

The expression complexity is high. If starting hypothesis are
large with respect to the number of variables the complexity of
the generated formula is high, further refinement being
necessary.

Model refinement through genetic algorithms needs special
methods, of which, those based on artificial intelligence give
edifying results in decreasing model complexity. For those there
is the Intelligent Model Refinement specialized module in the
software product used for refinement.

The generalization of these results is based on the analysis of
LTSCPP source code collection. Those sources are developed
under imposed homogeneity conditions , applying all the
refinement methods implemented in the software product
SoftRefine with emphasis on advantages and disadvantages of
these methods.

8. REFINED MODELS VALIDATION

Using the results obtained from the refinement process, refined
indicators are computed for a new set of software modules,
solving a problem from the same class. The estimated levels are
compared with the effective ones.

Considering My, M,, ..., M, models used in the refinement
process via variable elimination method. Estimated levels are
computed and compared to the recorded real levels. If for the
first V models, the differences between real values and the
recorded values are acceptable for K of them, if the fraction
q=K/V €[0.78;1] the method is validated.

The model obtained through a validated technique is further
object to a validation process, using the new SDy, SD,, ..., SDy,
datasets. If there are small differences between the recorded
values and those estimated, the refined model is validated.

For the M, model, a new dataset is used, a sample of 35 records
extracted from CM1 public dataset also from [14]. After
estimating the error count, the correlation between the recorded
values and the estimated ones is 0,8204 which shows the model
is usable outside the initial dataset.

Model validation corresponds to a process the refinement
method is validated in the first hand.

9. CONCLUSIONS

The sets of studied programs should be extended and metrics
for them should be automatically recorded The refinement
process has a cyclic character. It must be reapplied periodically
as the phenomena are dynamic and changes occur within the
relations between dependent variables and independent
variables, new factors influencing the phenomenon appear,
other factors cease to affect the phenomenon.

The software instruments used for refinement such as
refinement modules and model generators should be included
into a modelbase. The modelbase is a complex structure
grouping datasets, models and modeling instruments such as
modules for refinement and model generators.

Refined models should be simple, easy to use and interpret, the
variables have automatically recorded values and must be
connected to computed ranges of quality indicators. If the
indicator ranges from 0 to 1, and the value of the indicator for
the current model is below a certain value, the model must be
abandoned.

Refinement methods are chosen according to their fitness for
the solved problem. First the refinement method is validated,
next, the refined model resulting from the method is also
validated.

Software solutions help the automation of refinement processes
and model generators.

REFERENCES

[1] Candida Ferreira, Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence,
Springer May 2006, 2nd Edition, ISBN 3540327967

[2] Adrian Visoiu - Performance Criteria for Software
Metrics Model Refinement, Journal of Applied Quantitative
Methods, Volume 2, Issue 1, March 30, 2007

[3] lon Ivan, Adrian Visoiu - IT Project metrics, Journal of
Applied Quantitative Methods, Volume 2, Issue 3 - September
30, 2007

[4] lon Ivan, Gheorghe Nosca, Marius Popa - Managementul
calitatii aplicatiilor informatice. Editura ASE, Bucuresti,
2006.

[5] lon Ivan, Catalin Boja - Managementul calitatii
proiectelor TIC, Editura ASE, Bucuresti, 2005, ISBN 973-
594-558-4

[6] lon IVAN, Adrian Visoiu - Baza de modele economice,
Editura ASE, Bucuresti, 2005, ISBN 973-594-571-1

[7] Adrian Visoiu, lon lvan - Rafinarea metricilor software,
Economistul, supliment Economie teoretica si aplicativa,
nr.1947(2973), 29 august 2005

[8] Adrian Visoiu, Gabriel Garais - Nonlinear model structure
generator for software metrics estimation, The 37th
International Scientific Symposium of METRA, Bucharest,
May, 26th - 27th, 2006, Ministry of National Defence,
published on CD

[9] Catilin Boja, lon Ivan - Metode statistice in analiza
software, Editura ASE, Bucuresti, 2004

[10] Pankaj JALOTE: Software Project Management in
Practice, Addison Wesley, 2002

[11] lon Ivan, Doru UNGUREANU - Project Complexity,
INFOREC Publishing House, Bucharest 2002

[12] Cristian Toma, lon Ivan, Marius Popa, Catalin Boja: Data
Metrics Properties, Proceedings of International Symposium
October 22-23, 2004, Tasi, Romania, pg. 45-56

[13] lon Ivan, Mihai Popescu: Metrici software, Editura
Inforec, Bucuresti, 1999

[14] http://mdp.ivv.nasa.gov/ Metrics Data Program

http://mdp.ivv.nasa.gov/

